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CENSORSHIP
AND POOL 

CANNIBALIZATION1
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CENSORSHIP1.1
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BLACKLISTING VIA PUNITIVE FORKING

You are a government that has jurisdiction over mining pools, 
say China.

Objective: Censor the Bitcoin addresses owned by certain 
people, say Gary Johnson, and prevent them from spending 
any of their Bitcoin

Block mined 
by Chinese 
miners

Normal 
block

Block containing 
transactions from 
Gary Johnson

AUTHOR: MAX FANG

HONG KONG 2017
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First strategy: 

Tell your country's mining pools not to include Johnson's transactions 
(blacklisting)
● Doesn't work unless you are 100% of the network
● Other miners will eventually include Gary Johnson's transactions in a block
● Can only cause delays and inconveniences

BLACKLISTING VIA PUNITIVE FORKING

AUTHOR: MAX FANG

HONG KONG 2017
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Second strategy:

● Remember, you are China; you have >51% of the network hashrate
● Mandate that Chinese pools will refuse to work on a chain containing 

transactions spending from Gary Johnson's Bitcoin address
● Announce this to the world

BLACKLISTING VIA PUNITIVE FORKING

AUTHOR: MAX FANG

HONG KONG 2017
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BLACKLISTING VIA PUNITIVE FORKING

● If non-Chinese miners include a transaction from Johnson in a block, China will 
fork and create a longer proof of work chain

● Block containing Johnson's transaction now invalidated, can never be 
published

AUTHOR: MAX FANG

HONG KONG 2017
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BLACKLISTING VIA PUNITIVE FORKING

● Non-Chinese miners eventually stop trying to include Johnson's transactions 
when mining blocks, since they know that their block will be invalidated by 
Chinese miners when they do

We have now shown how a 51% majority can prevent anyone from accessing their 
funds. This is called punitive forking.

AUTHOR: MAX FANG

HONG KONG 2017
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BLACKLISTING VIA FEATHER FORKING

Punitive forking doesn't work unless you have >51% of hashpower. Is there another way? 
Yes! Called Feather Forking
● New strategy: Announce that you will attempt to fork if you see a block from Gary 

Johnson, but you will give up after a while
○ As opposed to attempting to fork forever; doesn't work without >51%

● Ex. Give up after block with Johnson's tx contains k confirmations

AUTHOR: MAX FANG

HONG KONG 2017
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BLACKLISTING VIA FEATHER FORKING

Let q equal the proportion of mining power you have, 0 < q < 1
Let k = 1: You will give up after 1 confirmation (one additional block)
● Chance of successfully orphaning (invalidating) the Johnson block = q2

If q = .2, then q2 = 4% chance of orphaning block. Not very good

AUTHOR: MAX FANG

HONG KONG 2017
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BLACKLISTING VIA FEATHER FORKING

But other miners are now aware that their block has a q2 chance of being 
orphaned. They must now decide whether they should include Johnson's tx in their 
block

EV(include) = (1 - q2) * BlockReward + Johnson's tx fee

EV(don't include) = BlockReward

AUTHOR: MAX FANG

HONG KONG 2017
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BLACKLISTING VIA FEATHER FORKING

EV(include) = (1 - q2) * BlockReward + Johnson's tx fee
EV(don't include) = BlockReward

Therefore, unless Gary Johnson pays q2 * BlockReward in fees for his transaction, 
other miners will mine on the malicious chain
● 4% * 12.5 BTC = 0.5 BTC = Johnson must pay $900 minimum/transaction

AUTHOR: MAX FANG

HONG KONG 2017
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POOL 
CANNIBALIZATION1.2
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POOL CANNIBALIZATION

You have 30% of the hashrate. Assume 1 BTC 
block reward. All of the following numbers are 
expected value.

● 30% HR (hashrate)
= 30% MR (Mining Reward) = 0.3 BTC

You buy more mining equipment, worth 1% of 
current network hashrate

Standard mining strategy
● Add 1% HR => 31/101 = 30.69% HR = 

.3069 BTC
○ Revenue gain = 0.0069 BTC for 

1% hashrate added

Cannibalizing Pools - Distribute your 1% equally 
among all other pools, withhold valid blocks.

● Rewards will still be received
● Undetectable unless statistically significant

Other pool hashrate breakdown: 
● (70/71 honest, 1/71 dishonest) 

= 70% honest hashrate = .7 BTC
● You own (1/71) of other pools, so expected 

value of mining there is
(1/71) * .7 = 0.0098 BTC

● 0.0098 (cheat) > 0.0069 (honest)

More profitable to cannibalize pools than mine 
honestly

(Originally presented by Martin Koppelmann at SF Bitcoin Devs Seminar)
AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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● Eyal optimizes profitability under how much 
hashrate to dedicate to attacking

● Model attack decisions as an iterative game
○ Two players: pool A and pool B

● Each iteration of the game is a case of the 
Prisoner’s Dilemma
○ Choose between attacking or not 

attacking

AUTHOR: MAX FANG

THE MINER'S DILEMMA
ITTAY EYAL, "THE MINER'S DILEMMA"
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● If pool A chooses to attack pool B, pool A 
gains revenue, pool B loses revenue
○ Pool B can retaliate by attacking pool 

A and gaining more revenue
● Thus, attacking is the dominant strategy in 

each iteration
○ Therefore if both pool A and pool B 

attack each other, they will be at a 
Nash Equilibrium

○ Both will earn less than they would 
have if neither of them attacked.

AUTHOR: MAX FANG

THE MINER'S DILEMMA
ITTAY EYAL, "THE MINER'S DILEMMA"
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● No-pool-attacks is not a Nash equilibrium
○ If none of the other pools attack, a pool can 

increase its revenue by attacking the others
● But if the pools agree not to attack, both (or 

all) benefit in the long run.
○ However, this is an unstable situation since 

on a practical level you can attack another 
pool anonymously

● If pools can detect attacks then maybe an 
optimistic long term solution is feasible

Nash Equilibrium is a Tragedy of the Commons

AUTHOR: MAX FANG

THE MINER'S DILEMMA
ITTAY EYAL, "THE MINER'S DILEMMA"
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SELFISH MINING: 
ANALYSIS AND 

DEFENSE2
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REVIEW: 
SELFISH MINING2.1
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SELFISH MINING (BLOCK-WITHHOLDING)

You are a miner; suppose you have just found a block.
● Instead of announcing block to the network and receiving reward, keep it 

secret
● Try to find two blocks in a row before the network finds the next one

This is called selfish mining or block-withholding

Secret 
block

Block not 
yet found Note: "block-withholding" is also 

sometimes used in the context of 
mining pools - submitting shares but 
withholding valid blocks

AUTHOR: MAX FANG

HONG KONG 2017
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If you succeed in finding a second block, you have fooled the network
● Network still believes it is mining on the longest proof of work chain
● You continue to mine on your own chain

Secret 
block

Block not 
yet found

Secret 
block

SELFISH MINING (BLOCK-WITHHOLDING)

AUTHOR: MAX FANG

HONG KONG 2017
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If the network finds a block, you broadcast your two secret blocks and make the 
network block invalid

● While network was working on the invalid block, you got a bunch of time to 
mine by yourself... for free!

● Free time mining on network 
=> higher effective proportion of hashrate => higher expected profits!

New 
block

Broad
cast

Broad
cast

SELFISH MINING (BLOCK-WITHHOLDING)

AUTHOR: MAX FANG

HONG KONG 2017
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But what if the network found their new block before you could find a second one? 
Race to propagate!

● If on average you manage to tell 50% of the network about your block first:
○ Malicious strategy is more profitable if you have >25% mining power

● If you have >33% mining power, you can lose the race every time and 
malicious strategy is still more profitable!
○ (actual math omitted due to complexity)

New 
block

Broad
cast

SELFISH MINING (BLOCK-WITHHOLDING)

AUTHOR: MAX FANG

HONG KONG 2017
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PUBLISH OR 
PERISH:

A DEFENSE2.2
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● However, does not provide a 
mechanism to evaluate whether the 
number of proofs is adequate to 
continue working

● Does not discuss how to prevent 
Sybil attacks on signatures
○ Selfish miner generates many 

signatures on the dummy block

Dummy block signatures
Proposed by Schultz (2015), Solat and 
Potop-Butucaru (2016)
● Accompany solved blocks with 

signatures on dummy blocks
● Proves that the block is witnessed 

by the network
○ Proves that a competing block 

is absent before miners are 
able to work on it

AUTHOR: MAX FANG

DEFENSES: BLOCK VALIDATION
HONG KONG 2017
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All three of these defenses require 
fundamental changes to the block 
validity and reward distribution rules
● Requires a hard fork to implement

○ We have hard enough time fixing 
transaction malleability

Can we do better?

Fork-punishment rule
Proposed by Lear Bahack (2013)
● Competing blocks receive no block 

reward
● The first miner who incorporates a 

poof of the block fork in the 
blockchain gets half of the forfeited 
rewards

● However, honest miners suffer 
collateral damage of this defense
○ This defense constitutes 

another kind of attack
AUTHOR: MAX FANG

DEFENSES: FORK-PUNISHMENT
HONG KONG 2017
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AUTHOR: MAX FANG

Uniform Tie Breaking
Proposed by Eyal and Sirer (2014)
● In the case of a tie, a miner randomly chooses which chain to mine on

○ Prevents an attacker from benefiting from network-level dominance
● Raises the profit threshold from 0% to 25% under their strategy

○ Sapirshtein (2015) proposes a more optimal selfish mining strategy
○ Reduces Eyal and Sirer profit threshold to 23.2% 

DEFENSES: TIE-BREAKING
HONG KONG 2017
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AUTHOR: MAX FANG

DEFENSES: TIE-BREAKING
HONG KONG 2017

Unforgeable timestamps
Proposed by Ethan Heilman (2014)
● Each miner incorporates the latest 

unforgeable timestamp issued by a 
trusted party into the working block
○ Timestamp is publically accessible and 

unpredictable
○ Issued with an interval of 60s

● When two competing blocks are 
received within 120s, a miner prefers the 
block whose timestamp is "fresher"

● Claim: Raises the profit threshold to 32%

Drawbacks
● Tie-breaking rules don’t apply 

when the selfish mining chain is 
longer than the public chain
○ Only applies to a block 

propagation race
● If an attacker has a large amount of 

computational power >40% then 
these defenses are essentially 
worthless
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Ren Zhang and Bart Preneel (Apr 2017) claim the best-yet defense of selfish mining
● Backwards compatible: No hard fork
● Disincentivizes selfish mining even when if the selfish miner has a longer chain

Approach: A novel Fork-Resolving Policy (FRP) 
● Replace the original Bitcoin FRP (length FRP), with a weighted FRP

○ Embed in the working block the hashes of all its uncle blocks
● Note that selfish mining is premised on the idea of first building a secret block
● Idea: Make sure this secret block does not help the selfish miner win the block 

race

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)
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Zhang and Preneel's Weighted Fork Resolving Policy:

1. If one chain is longer height-wise than the other(s) by k or greater blocks*
a. The miner will mine on this chain

2. Otherwise, the miner will choose the chain with the largest weight
3. If the largest weight is achieved by multiple chains simultaneously, then the 

miner chooses one among them randomly

*Aside: k is a "fail-safe parameter" that gauges the allowed amount of network partition. Note 
that when k = ∞ the first rule never applies.

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)
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AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Miner has one secret block. A competing block is published. Block race! Miner has two options:
● Option 1: If the selfish miner publishes their block, the next honest block gains a higher 

weight by embedding a proof of having seen this block
● Option 2: If the selfish miner keeps their block secret, the secret block does not 

contribute to the weight of its own chain
● In both scenarios, the secret block does not help the selfish miner win the block race

Choice 1: Publish Choice 2: Don't publish
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Definitions
● ᶦ: An assumed upper bound on the amount of time it takes to propagate blocks across the 

Bitcoin network
● In time. Evaluated from the miner’s local perspective.

1. Height value is greater than that of the local head OR
2. Height value is same as that of the local head, but was propagated within ᶦ time

● Uncle. Different from Ethereum’s definition of an uncle
1. The uncle of a block B is one less the height of B
2. The uncle has to be in time

"A block B1 is the uncle of another block B2 if B1 is a competing in-time block of B2’s 
parent block"

● Weight. Since two competing chains always have a shared root, only consider blocks after that
○ weight = # of in time blocks + # of uncle hashes embedded in these blocks

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)
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AUTHOR: MAX FANG

PUBLISH OR PERISH

Same scenario revisited. More rigorously, let ᫷ be the first selfish block

Choice 1: Selfish miner publishes ᫷
● ᫷ will be an uncle of the next honest block

○ (since it was published in time and its height is one less)
=> ᫷ counts into the weight of both the honest and the selfish chain

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Choice 1: Publish
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AUTHOR: MAX FANG

PUBLISH OR PERISH

Choice 2: Selfish miner doesn't publish ᫷
● Selfish miner waits, and publishes it later as a part of the selfish chain
● Honest miners do not count ᫷ into the weight of the selfish chain because ᫷ is not in time.

○ It is a late block
● ᫷ is not an uncle of the next honest block because the honest miners did not see it

=> ᫷ contributes to neither the weight of the honest nor the selfish chain

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Choice 2: Don't publish
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AUTHOR: MAX FANG

PUBLISH OR PERISH

Result: Regardless of which option is chosen...

● ᫷ will not contribute to only the weight of the selfish chain.
○ Will only contribute to both or neither

● Completely nullifies the advantage of the secret block ᫷ !

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Choice 1: Publish Choice 2: Don't publish
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AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)
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Limitations
● Bitcoin aims be asynchronous, Publish and Perish assumes synchronicity

○ (Because it assumes an upper bound of block propagation time)
○ Because of this, it's basically useless

● When the fail-safe parameter k > 1, an attacker may broadcast blocks right before they are late 
to cause inconsistent views among the honest miners

○ Several other selfish mining defenses also require a fixed upper bound on the block 
propagation time in order to be effective

● During the transition period to weighted FRP, an attacker can launch double-spend attacks
● Neglects real world factors:

○ Does not permit the occurrence of natural forks
○ Does not consider transaction fees on the selfish miner’s strategy
○ Does not consider how multiple selfish miners could collude and compete with each 

other
● Does not achieve incentive compatibility, but is the closest scheme to date

AUTHOR: MAX FANG

PUBLISH OR PERISH: LIMITATIONS
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)
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NETWORK 
ATTACKS AND 
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3
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NETWORK 
ATTACKS3.1
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DOS ATTACK - MALICIOUS MINERS

Malicious miners can denial-of-service attack (DoS) competing miners, effectively 
taking the competing miners out of the network and increasing the malicious 
miner’s effective hash power!

Miners with access to a distributed Botnet have a competitive advantage.

Caveat: need to maintain DoS for 2 weeks so block difficulty adjusts.

AUTHOR: PHILIP HAYES

HONG KONG 2017
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ECLIPSE ATTACK

Force network partition between public 

network and a specific miner

● Set up yourself, Alice, as a MITM 

between Bob (the public network) 

and Lucy (the victim miner).

● If successful, the attacker can

○ control the blocks Lucy sees

○ force Lucy to mine on Alice’s 

chain

○ N-confirmation double spend
AUTHOR: PHILIP HAYES

HEILMAN ET AL.

Alice 
(attacker)

Lucy 
(victim)

Bob 
(public)
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ECLIPSE ATTACK

Bitcoin Networking Background
● Most nodes have 8 outgoing connections 

and 117 incoming connections.

● tried table: stores IP address that a node 

has successfully made incoming or outgoing 

TCP connections.

● new table: stores IP addresses received 

from DNS seeders or ADDR messages.

○ ADDR messages contain a list of 

known peer IP addresses (up to 1000).

AUTHOR: PHILIP HAYES

HEILMAN ET AL.

● When a node restarts

○ Randomly selects an IP address from 

either tried or new tables

○ If the connection succeeds, add that 

IP address as a new outgoing 

connection.

○ Repeat until 8 outgoing connections.
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ECLIPSE ATTACK

AUTHOR: PHILIP HAYES

HEILMAN ET AL.

Eclipse Attack Details
1. Acquire large number of IP addresses, e.g., control a distributed botnet.

2. Fill the tried table with attacker-controlled addresses by having them connect to 

Lucy.

3. Overwrite addresses in the new table with “trash” IP addresses.

a. Have attacker peers send unsolicited ADDR messages filled with “trash”.

b. “Trash” addresses can be, e.g., “reserved for future use” like 252.0.0.0/8 block.

4. Force or wait for Lucy to restart.

5. With high probability, when Lucy restarts, she forms all of her outgoing connections 

with attacker controlled IP addresses.
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ASICBOOST 
EXPLAINED3.2
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

ASICBOOST Overview

● ASIC mining optimization that increases hash rate by ~20-30%.

● Exploits reusable, partially computed, intermediate SHA256 states.

○ Precompute merkle tree permutations with the same 4-byte merkle tail

Recall: Bitcoin Block Header
0 36 80

bytesv
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previous block hash merkle root
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

SHA-256 of Bitcoin Block Header
0 36 80

v
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r
s
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previous block hash merkle root

68

chunk 1 chunk 2

72 76
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64 128
bytes

0

padding

S1 S2S0

128
bytes
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

SHA-256 of Bitcoin Block Header (cont.)

chunk 1 chunk 2

64 128
bytes

0

S1 S2S0

S0 S1
Double Hash 
Output
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Saving work with colliding chunks

chunk 1

S1S0

S0

If we generate many block headers 
where the second chunk is the same, 
we can avoid recomputing the S1’s 
when we update the nonce!

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 2, nonce = 0

S2

S1
Double Hash 
Output

ABCD



52  

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Saving work with colliding chunks

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 2, nonce = 0

S2

S1
Double Hash 
Output

ABCD

chunk 2, nonce = 1

S2

S1
Double Hash 
Output

chunk 2, nonce = 2^32 - 1

S2

S1
Double Hash 
Output
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ASICBOOST EXPLAINED
JEREMY RUBIN

How do we get block headers with equal chunk 2’s?

0 36 80
bytes

v
e
r
s
i
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n

4

previous block hash
head

68 72 76

t
i
m
e

n
b
i
t
s

n
o
n
c
e

● Since version, prev. block hash are fixed:
○ Have to iterate over different merkle trees
○ Want to find merkle trees where last 4 

bytes (tail) are the same (collide).

●

chunk 2chunk 1

merkle root

tail

AUTHOR: PHILIP HAYES
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Two Block Headers, A & B, with Colliding Merkle Tails
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Simple method:

○ Swap the root’s children

○ Only need to recompute 1 hash.

AB
CD

AB CD

A B C D

Merkle Root: CD
AB

CD AB

C D A B

Recompute merkle root 
in only 1 hash operation
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches 

and sqrt(N) right merkle branches.

LLLLi

RRRRRj
LLL

RRR

Left merkle 
branches

Right merkle 
branches
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches 

and sqrt(N) right merkle branches.

2. Iterate over all i, j and hash the ith left 

branch with the jth right branch.

LLLLi

RRRRRj
LLL

RRR

Left merkle 
branches

Right merkle 
branches

LiRj
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches 

and sqrt(N) right merkle branches.

2. Iterate over all i, j and hash the ith left 

branch with the jth right branch.

LLLLi

RRRRj-1

RjLLL
RRR

Left merkle 
branches

Right merkle 
branches

LiRj-1
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ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches 

and sqrt(N) right merkle branches.

2. Iterate over all i, j and hash the ith left 

branch with the jth right branch.

3. Apply this recursively to generate 

sqrt(sqrt(N)) left and right branches.

LLLLi

RRRRj-1

RjLLL
RRR

Left merkle 
branches

Right merkle 
branches

LiRj-1



60  

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Finding N-Way collisions

● Instance of Generalized Birthday Paradox

● To find 4-Way merkle tail collision with >50% 

probability requires:

○ N = 225 hashes = 1 GiB of space

● ~20-30% hash power advantage!

How does SegWit stop ASICBOOST?

● (aka why Bitmain is acting shady)

● SegWit adds a Witness Commitment in 

coinbase of left-most merkle leaf.

● Requires miner to commit to transaction 

ordering.

● Can’t permute merkle branches like 

previously described, since that changes 

the transaction ordering.
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STUBBORN MINING 
AND 
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STUBBORN 
MINING4.1
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Generalizing selfish mining strategies 
● Include block propagation race in 

our model.
● Extend selfish mining to include 

strategies that
○ withhold blocks longer
○ attempt to catch up to a longer 

public chain
○ are more or less risky with 

block propagation races

STUBBORN MINING

AUTHOR: PHILIP HAYES

Certain strategies outperform selfish 
mining
● for different hash rates and block 

race win rates.
● Strategy metric:

○ Strategy A > Strategy B if we 
earn more BTC on average

NAYAK, KUMAR, MILLER, SHI
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Main Variables

● ᶓ (Alice): Attacker's proportion of network hashrate

● β (Bob): Honest network hashrate

● ᶕ: Proportion of Bob’s network that will mine on Alice’s block when Alice and 

Bob have released a block at approximately the same time, resulting in an 

equal length fork

FORMAL MODEL

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
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PLAUSIBLE VALUES OF ᶓ AND ᶕ

AUTHOR: PHILIP HAYES

Plausible values of ᶓ - Alice mining power:
● 37% : Three largest mining pools collude

● 26% : Two largest mining pools collude

● 16% : Largest mining pool

Not Plausible / Not Considered:
● >50% : Consensus breaks down anyway

○ mining strategy not relevant

○ can mine every block

○ private fork will always outpace public 

network given enough time

NAYAK, KUMAR, MILLER, SHI
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PLAUSIBLE VALUES OF ᶓ AND ᶕ

Plausible values of ᶕ:
● ᶕ = Proportion of network that mines on 

our block in a propagation race.

● Depends on:

○ Latency between Alice and other 

nodes

○ Latency between other miner and 

other nodes

○ Network topology, e.g., how 

well-connected is Alice; large 

miners usually well-connected.

● ⇒ Consider all values ᶕ in [0, 1]

NAYAK, KUMAR, MILLER, SHI

Alice can actively attack network to 

improve ᶕ:
● Monopolize other nodes’ incoming 

connections

○ Bitcoin nodes have a finite number 

of incoming TCP connections

○ Alice can spawn sybils to fill up 

available incoming connection slots.

Public Network Defenses :
● Miner backbone, e.g., FIBRE block relay
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FORMAL MODEL

AUTHOR: MAX FANG

Stubborn Mining Strategies

● ᫬: Honest strategy

● ᫷: Selfish mining strategy

● ᫰-stubborn: Lead stubbornness

○ Does not broadcast blocks even with a high lead over the public

● ᫪-stubborn: Fork stubbornness

○ Will not give up during an equal fork

● ᫸ᬇ-stubborn: Trail stubbornness

○ Does not merge with public unless it is trailing the public by more than ᬇ 
blocks

NAYAK, KUMAR, MILLER, SHI
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Markov Chain State Representation
● lead: how much Alice's chain is ahead 

of Bob's. Is some integer N
● N': There is a fork, and

○ The revealed portion of the fork is 
of equal length

○ Bob's mining power is split on this 
fork according to ᶕ

● N'': Same as N', but all of Bob's mining 
power is on their own fork (i.e. ᶕ = 0)

FORMAL MODEL

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
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FORMAL MODEL

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

Markov Chain State Representation
● lead: how much Alice's chain is ahead 

of Bob's. Is some integer N
● N': There is a fork, and

○ The revealed portion of the fork is 
of equal length

○ Bob's mining power is split on this 
fork according to ᶕ

● N'': Same as N', but all of Bob's mining 
power is on their own fork (i.e. ᶕ = 0)
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EXAMPLE: SELFISH MINING

A mining strategy consists of two 
decisions:
1. When to broadcast your private 

chain
2. When to mine off the public chain's 

head

Honest mining: Always broadcast as 
soon as block is found, and always 
accept longest chain

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI Selfish mining
● When lead = 2 and Bob mines the 

next block: Reveal Alice’s entire 
private chain to Bob (resulting in 
lead = 0)

● When lead = 0' and Alice mines the 
next block: Reveal Alice’s private 
chain to Bob (resulting in lead = 0).

● • When lead = 0 or lead > 0 and 
Alice mines the next block: Do not 
reveal Alice’s private chain

● Like in honest mining, Alice always 
accepts the longest chain.



71  SELFISH MINING: MARKOV 
REPRESENTATION

AUTHOR: MAX FANG

Selfish mining
● When lead = 2 and Bob mines the 

next block: Reveal Alice’s entire 
private chain to Bob (resulting in 
lead = 0)

● When lead = 0' and Alice mines 
the next block: Reveal Alice’s 
private chain to Bob (resulting in 
lead = 0).

● When lead = 0 or lead > 0 and 
Alice mines the next block: Do 
not reveal Alice’s private chain

● Like in honest mining, Alice 
always accepts the longest chain.

NAYAK, KUMAR, MILLER, SHI
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LEAD STUBBORN STRATEGY

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
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TRAIL STUBBORN, EQUAL FORK STUBBORN

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
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AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
PROFITABILITY CALCULATION

Profitability measurements
● Profitability (for Alice) is measured 

as relative gain of Alice compared 
to Bob

gain᫼ is proportion of blocks earned by 
Alice under strategy ᫼.

Gains are normalized w.r.t. ᶓ
● ᶓ is what Alice would have 

received honestly
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DOMINANT STRATEGY SPACE

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
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AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
DOMINANT STRATEGY SPACE
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AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
RELATIVE PROFITABILITY
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AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
RELATIVE PROFITABILITY
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ECLIPSE 
ATTACK 

COMPOSITIONS4.3
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Combining Stubborn Mining and Eclipse Attacks
● ᶝ : Lucy’s hash power = the eclipsed miners’ hash power

● D : Destroy the Eclipsed Victim

○ Alice ignores all of Lucy’s mined blocks, effectively removing Lucy from the network

● C : Collude with the Eclipsed Victim

○ Alice forces Lucy to mine on Alice’s private chain by feeding Lucy only Alice’s 

blocks.

NAIVE ECLIPSE STRATEGY

AUTHOR: PHILIP HAYES

NAYAK, KUMAR, MILLER, SHI
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SOPHISTICATED ECLIPSE STRATEGY

AUTHOR: PHILIP HAYES

NAYAK, KUMAR, MILLER, SHI

More Sophisticated Eclipse Strategies
● DNS : Destroy if No Stake

○ Only broadcast Lucy’s blocks if she’s mining on our private chain.

○ Otherwise, if Lucy finds a block on the main chain (lead = 0), we ignore her blocks
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SOPHISTICATED ECLIPSE STRATEGY

AUTHOR: PHILIP HAYES

NAYAK, KUMAR, MILLER, SHI

Optimal Strategy Space
● In some cases, Lucy is actually 

incentivized to collude with 

Alice!
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COLLUSIONS 
AND 

CONCLUSIONS5
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POST-BLOCK REWARD BITCOIN

Assumption: average Bitcoin user holds 
$100,000 in Bitcoin, willing to pay $1000 in 
fees

● (This is when Bitcoin is near 0 block 
reward)

● Is mining based off transaction fees 
sustainable?

● Money must move, must be paid in 
transaction fees so that miners can 
collect it as mining reward

● Amount of hashpower going into 
Bitcoin dependent on mining reward

Therefore
● (average fees paid) / (avg holdings) =

(network fees paid) / (market cap) = 
(cost of attacking) / (market cap)

● In our example, attacker only needs 
to pay 1% of the market cap of Bitcoin 
to gain 50% of the hashrate
○ Since that is the amount of 

money going into mining
● More realistic scenario: Attacker only 

needs 0.1% of market cap to attack

Post reward Bitcoin must have a high 
velocity of money to be secure

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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LEMMAS  1 & 2

Computational power requires electricity, which, requires $$, reaches equilibrium if 
miners are breaking even or profitable

● Lemma 1: Mining Reward = Mining Cost

If you are roughly breaking even with the capital you invest, there is little to no 
marginal cost to getting more hashrate. You simply need more capital to attain 51%

● Lemma 2: Cost of acquiring 51% ≈ 0 < Mining cost

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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LEMMA 3

What profits can you get from owning >51% of the hashrate
● Crash the currency? No problem. Regain value (and then some) by shorting Bitcoin 

on an exchange

You can effectively get 100% of the mining reward
● Only mine on your own blocks

○ Can prevent anyone else from mining - you always produce longest PoW chain

How this would affect the price depends on threshold
● q = 51% => 49% of blocks are orphaned (eh)
● q = 80% => 20% of blocks are orphaned

○ Average Bitcoin user not really affected, still able to make transactions

Lemma 3: Value of 51% attack > Mining Reward

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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LEMMA COMBINATION AND CONCLUSION

Lemmas:
● Lemma 1: Mining Reward = Mining Cost
● Lemma 2: Cost of acquiring 51% < Mining Cost
● Lemma 3: Value of 51% attack > Mining Reward

Therefore, Value of 51% attack > Cost of acquiring 51%

If math is correct, Game Theory says that 51% attacking Bitcoin is profitable

(Originally presented by Martin Koppelmann at SF Bitcoin Devs Seminar)
AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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COLLUSIONS5.1
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POOL COLLUSIONS

Bitcoin mining is zero sum
● In general, to increase earnings, someone 

else needs to be excluded

Members-only Mining
● Let hashrate join a collusion until 80% of 

the network is in, then exclude the rest
● No incentive not to join

○ Attack succeeds, get increased 
reward

○ Attack wouldn't fail: conduct attack in 
such a way that it wouldn't start until 
the threshold is reached

● Therefore Game Theory dictates that this 
would always happen

Naive Example

● 3 pools collude, own more than 51%
● Ignore every 10th block of another pool
● How to detect?

More profitable than honest strategy

Thought: How many of these are going on 
today?

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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CONCLUSIONS5.2
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Pool Block-Withholding: Countermeasures?
● Want: A way to offset costs incurred by pool wars
● Idea: More orphaned blocks are a sign of pool wars
● Martin Koppelmann proposes insurance contracts that pay out to bitcoin 

stakeholders based on number of orphaned blocks

What are the implications?
● Yaron Velner, Jason Teutsch, and Loi Luu explore this concept in detail
● "Smart Contracts Make Bitcoin Mining Pools Vulnerable" (2017)

DESTROYING MINING POOLS

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS
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"Insurance contracts" incentivizes pool 
block-withholding
● Recall: Pay-per-share mining pool 

reward scheme pays per every partial 
hash solution found

○ No incentive to submit valid blocks to 
the pool beyond the reward for that 
share

● Incentivizing someone from submitting 
a valid block only requires offsetting 
the cost of a single share

○ Called the block purchasing budget

AUTHOR: MAX FANG

Let's trustlessly (and anonymously) set up 
a way for someone to receive a reward for 
withholding a block from a pool. Sketch:

● Set up a contract on Ethereum, which 
has a scripting language rich enough 
to parse Bitcoin blocks

● Reward a tuple where

(b'2 is the withheld block)

This proof-of-stale-work can even be 
targeted at a specific pool

VELNER, TEUTSCH, LUU (2017)
DESTROYING MINING POOLS
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Velner, Teutsch, and Luu do some napkin math:
● D the difficulty of the entire Bitcoin network
● d the difficulty of a single share. s = d / D
● r be the block reward, 

The reward per share is thus r * (d / D)
● Highest recommended d = 4,096. Network parameter D > 2.53 x 109 (Nov 2016)

Result: Reward from a single share (in Nov 2016) is 2.5x10-7 = $0.02 per share

DESTROYING MINING POOLS

AUTHOR: MAX FANG

VELNER, TEUTSCH, LUU (2017)
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Some more napkin math:
● ᶓ attacker's mining power, as a 

fraction of the network
● ᶔ the proportion of blocks that are 

withheld from the network
● If attacker manages to discard ᶔ 

fraction of blocks, their effective 
hashrate in the network is 

a = ᶓ / (1 - ᶔ)
● Attacker's additional revenue from 

destroying fraction of blocks is

● When ᶔ fraction of miners don't 
submit valid blocks, network difficulty 
decreases by multiplicative factor
(1 - ᶔ) and expect to find ᶔ / (1 - ᶔ) 
blocks.

● Expected revenue is thus s * r times 
the above quantity, yielding revenue

Combining (2) and (3), both attacker and 
participating miners are profitable if 

DESTROYING MINING POOLS

AUTHOR: MAX FANG

VELNER, TEUTSCH, LUU (2017)
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DESTROYING MINING POOLS

AUTHOR: MAX FANG

Both attacker and participating miners are 
profitable if

What is s? From our previous calculations,

which is 1/50,000,000 of the network or 
0.000002%

VELNER, TEUTSCH, LUU (2017)
0.000002% of the network is equivalent 
to 4 TH/s mining power
● Less than a single ASIC

Conclusion: 
● With a single ASIC worth of mining 

power, an attacker can incentivize all 
miners a given PPS mining pool to 
cannibalize the pool
○ Attacker even profits!

● Theoretical result: Easily destroy all 
mining pools this way with one ASIC

But how realistic is this really?
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Practical caveats to game-theoretical attacks

● Attack requires significant risk or capital
○ Poor game-theoretical assumption

● Hard to write and deploy custom exploitative software
● Insufficiently motivated attackers
● Miners may support Bitcoin
● Social costs: vigilante attackers

○ Lack of anonymity

CAVEATS TO RATIONALITY ASSUMPTIONS

AUTHOR: MAX FANG

HONG KONG 2017



97  

CONCLUSIONS

The world is not rational!
● We're bound by the paradox of choice
● Rationality assumptions conjecture no need for the work of academics

○ We would have exploited these attacks in practice already!

Conclusion
● Bitcoin is not game-theoretically secure

○ Something else is keeping Bitcoin alive
○ More emphasis should be placed on behavioral economics, psychology, 

and sociology

AUTHOR: MAX FANG

HONG KONG 2017
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RELATED WORK NOT COVERED

Additional great game theoretical work:
● Joseph Bonneau paper on in-band double spend bribery

○ Whale transactions
● (Claimed) Incentive compatible PoW blockchains

○ Fruitchains (2016) by Elaine Shi
○ Meshcash and some more

● In-depth Post Block-Reward analysis
○ Narayanan et al 2016: "On the Instability of Bitcoin Without the Block 

Reward"
● Vlad Zamfir on Casper

AUTHOR: MAX FANG

HONG KONG 2017
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EXTRA 
CONTENTX

AUTHOR: MAX FANG
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AUTHOR: MAX FANG

PUBLISH OR PERISH

●

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)
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IN-BAND SMART CONTRACT BRIBERY

AUTHOR: MAX FANG

BONNEAU, "WHY BUY WHEN YOU CAN RENT?"
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DOUBLE SPENDS: WHALE TRANSACTIONS

AUTHOR: MAX FANG

HONG KONG 2017
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Source: 
blockchain.info/pools (2017-05-15)

Community exhibits backlash 
against large mining pools

● Ex: GHash.io in 2014

Single entity might be be 
participating in multiple pools

● Called "Laundering 
hashes"

● Actual concentration of 
control over mining 
hardware is unknown

MINING POOL
HASHRATE 
DISTRIBUTION

AUTHOR: MAX FANG

https://blockchain.info/pools
https://blockchain.info/pools
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MINING POOLS - SHARES

How to prove that you are contributing to the pool?

Submit Shares: 'Near-valid' blocks

● Producing shares implies computational power being expended
● Pool operator pays for valid shares

○ Rewards distributed proportional to # of shares submitted

● Valid blocks are shares as well
○ Individual who finds valid block is not rewarded any extra coins

FAQ: Why can't someone submit shares in a pool and keep the reward of the valid block 
for themselves?
● The valid block is based on the Merkle root given by the pool operator.
● Pool public key ➞ Coinbase tx ➞ Merkle Root

AUTHOR: MAX FANG

HONG KONG 2017
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MINING POOLS - BASIC REWARD SCHEMES

Pay-per-share

Pool pays out at every share submitted. By 
default will be proportional to work done by 
individuals

1. More beneficial for miners
2. Individual miners have no risk from reward 

variance
a. Pool takes on the risk completely

3. Problem: No incentive for individuals to 
actually submit valid blocks

a. Individuals are paid regardless

Proportional

Pool pays out when blocks are found, 
proportional to the work individuals have 
submitted for this block 

1. More beneficial for the pool
2. Individual miners still bear some risk in 

variance proportional to size of the pool 
a. Not a problem if pool is sufficiently 

large
3. Lower risk for pool operators - only pay out 

when reward is found
a. Individuals thus incentivized to 

submit valid blocks

AUTHOR: MAX FANG

HONG KONG 2017
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POOL HOPPING

Pool hopping: switching between pools to 
increase total rewards

● Proportional pool pays larger amount per 
share if a block is found quickly

Example clever strategy:

● Mine at proportional pool shortly after a 
block was found (while rewards are high)

● Switch to pay-per-share pool when once 
proportional pool is less profitable

Parameters:
● Pool has 10% of network hashrate
● 4 shares expected per valid block

AUTHOR: MAX FANG

HONG KONG 2017
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POOL HOPPING

Therefore, proportional pools are not 
feasible in practice

● Honest miners who stay loyal to one 
pool are cheated out of their money

Designing a mining pool reward scheme 
with aligned incentives that is not 
vulnerable to pool hopping remains an 
open problem

Parameters:
● Pool has 10% of network hashrate
● 4 shares expected per valid block

AUTHOR: MAX FANG

HONG KONG 2017
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EXTRA

1. Use something better than QT
2. This works

a. If you reach 51%, you get a higher 
reward, so it's sustainable

Hashrate / PoW does not secure 
Bitcoin/transactions - full nodes do! PoW only 
distributes votes

Other mechanics for vote distribution are 
maybe fine

(Originally presented by 
Martin Koppelmann at SF 
Bitcoin Devs Seminar)

AUTHOR: MAX FANG

HONG KONG 2017
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TRANSACTION MALLEABILITY

Transaction Malleability: 

Nodes relaying a fresh transaction can tweak certain fields to make a version of the 
transaction with a different hash image, yet the digital signature still verifies!

AUTHOR: PHILIP HAYES

HONG KONG 2017
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TRANSACTION MALLEABILITY

Transaction Malleability: 

Nodes relaying a fresh transaction can tweak certain fields to make a version of the 
transaction with a different hash image, yet the digital signature still verifies!

For example: in ECDSA, the following signature pairs are equivalent:

(r, s (mod N)) and (r, -s (mod N))

Both validate the same transaction data, but now the hash image changes.

Additionally, the scriptSig field can (sometimes) have extraneous script ops tacked on 
the end.

AUTHOR: PHILIP HAYES

HONG KONG 2017
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TRANSACTION MALLEABILITY

When is this an issue? In some cases, transactions rely on a chain of previous 
transactions (common in micro payments / lightning network).

Changing the hash image of a prior transaction in the chain will invalidate every 
subsequent transaction!

AUTHOR: PHILIP HAYES

HONG KONG 2017
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TRANSACTION MALLEABILITY

Example: Mt. Gox Incident

1. Mt. Gox sees attacker made withdrawals
2. Attackers used transaction malleability to change txid in-flight
3. To Mt. Gox, it looks like the transaction didn’t go through. Meanwhile, the BTC 

was actually sent to the attack!
4. Mt. Gox doesn't deduct amount from attacker's account, but still sent BTC.

Solutions? The new SegWit (Segregated Witness) proposal stores transaction 
signatures in a separate merkle tree, effectively fixing transaction malleability.
(Not yet in production)

AUTHOR: PHILIP HAYES

HONG KONG 2017


