
1

GAME THEORY &
NETWORK ATTACKS:
HOW TO DESTROY BITCOIN

Max Fang
Philip Hayes

2

ABOUT MAX

● UC Berkeley Student: CS + Econ
● Got into Bitcoin Feb 2014 doing GPU-based

cryptocurrency mining
● Worked at ChangeTip for a year

○ Acqui-hired by Airbnb
● Since 2014, run Blockchain at Berkeley (Previously

Bitcoin Association of Berkeley)
○ Berkeley Bitcoin Meetup - Fall 2016
○ Blockchain Consultancy - Fall 2016
○ Education + R&D Department - Spring 2017
○ ~250 unique monthly visitors

● Independent research into Bitcoin mixing
● Designed, teach, and lecture for the

Cryptocurrency Decal
○ World's only undergraduate cryptocurrency

course
● Soon to be developer evangelist intern at

Lightning Network!

Me and the ChangeTip team

HONG KONG 2017

3

ABOUT PHILIP

● UC Berkeley Student: EECS (Electrical Engineering &
Computer Science)

● Ran Bitcoin miners off of High school’s library
computers

● Worked at IBM
● Researched Distributed, Decentralized Bitcoin Mixing
● Undergraduate Researcher under John F. Canny at

UC Berkeley
○ Worked on BIDMat/BIDMach

high-performance GPU linear algebra and
machine learning libraries.

● Created/taught the Cryptocurrency Decal
● Lightning Network contributor

HONG KONG 2017

4

Collusions and
Conclusions5

Censorship and
Pool Cannibalization1

Stubborn Mining and
Eclipse Attack
Compositions

4

Network Attacks
and ASICBOOST3

Selfish Mining:
Analysis and Defense2

LECTURE OUTLINE
HONG KONG 2017

5

CENSORSHIP
AND POOL

CANNIBALIZATION1

6

CENSORSHIP1.1

7

BLACKLISTING VIA PUNITIVE FORKING

You are a government that has jurisdiction over mining pools,
say China.

Objective: Censor the Bitcoin addresses owned by certain
people, say Gary Johnson, and prevent them from spending
any of their Bitcoin

Block mined
by Chinese
miners

Normal
block

Block containing
transactions from
Gary Johnson

AUTHOR: MAX FANG

HONG KONG 2017

8

First strategy:

Tell your country's mining pools not to include Johnson's transactions
(blacklisting)
● Doesn't work unless you are 100% of the network
● Other miners will eventually include Gary Johnson's transactions in a block
● Can only cause delays and inconveniences

BLACKLISTING VIA PUNITIVE FORKING

AUTHOR: MAX FANG

HONG KONG 2017

9

Second strategy:

● Remember, you are China; you have >51% of the network hashrate
● Mandate that Chinese pools will refuse to work on a chain containing

transactions spending from Gary Johnson's Bitcoin address
● Announce this to the world

BLACKLISTING VIA PUNITIVE FORKING

AUTHOR: MAX FANG

HONG KONG 2017

10

BLACKLISTING VIA PUNITIVE FORKING

● If non-Chinese miners include a transaction from Johnson in a block, China will
fork and create a longer proof of work chain

● Block containing Johnson's transaction now invalidated, can never be
published

AUTHOR: MAX FANG

HONG KONG 2017

11

BLACKLISTING VIA PUNITIVE FORKING

● Non-Chinese miners eventually stop trying to include Johnson's transactions
when mining blocks, since they know that their block will be invalidated by
Chinese miners when they do

We have now shown how a 51% majority can prevent anyone from accessing their
funds. This is called punitive forking.

AUTHOR: MAX FANG

HONG KONG 2017

12

BLACKLISTING VIA FEATHER FORKING

Punitive forking doesn't work unless you have >51% of hashpower. Is there another way?
Yes! Called Feather Forking
● New strategy: Announce that you will attempt to fork if you see a block from Gary

Johnson, but you will give up after a while
○ As opposed to attempting to fork forever; doesn't work without >51%

● Ex. Give up after block with Johnson's tx contains k confirmations

AUTHOR: MAX FANG

HONG KONG 2017

13

BLACKLISTING VIA FEATHER FORKING

Let q equal the proportion of mining power you have, 0 < q < 1
Let k = 1: You will give up after 1 confirmation (one additional block)
● Chance of successfully orphaning (invalidating) the Johnson block = q2

If q = .2, then q2 = 4% chance of orphaning block. Not very good

AUTHOR: MAX FANG

HONG KONG 2017

14

BLACKLISTING VIA FEATHER FORKING

But other miners are now aware that their block has a q2 chance of being
orphaned. They must now decide whether they should include Johnson's tx in their
block

EV(include) = (1 - q2) * BlockReward + Johnson's tx fee

EV(don't include) = BlockReward

AUTHOR: MAX FANG

HONG KONG 2017

15

BLACKLISTING VIA FEATHER FORKING

EV(include) = (1 - q2) * BlockReward + Johnson's tx fee
EV(don't include) = BlockReward

Therefore, unless Gary Johnson pays q2 * BlockReward in fees for his transaction,
other miners will mine on the malicious chain
● 4% * 12.5 BTC = 0.5 BTC = Johnson must pay $900 minimum/transaction

AUTHOR: MAX FANG

HONG KONG 2017

16

POOL
CANNIBALIZATION1.2

17

POOL CANNIBALIZATION

You have 30% of the hashrate. Assume 1 BTC
block reward. All of the following numbers are
expected value.

● 30% HR (hashrate)
= 30% MR (Mining Reward) = 0.3 BTC

You buy more mining equipment, worth 1% of
current network hashrate

Standard mining strategy
● Add 1% HR => 31/101 = 30.69% HR =

.3069 BTC
○ Revenue gain = 0.0069 BTC for

1% hashrate added

Cannibalizing Pools - Distribute your 1% equally
among all other pools, withhold valid blocks.

● Rewards will still be received
● Undetectable unless statistically significant

Other pool hashrate breakdown:
● (70/71 honest, 1/71 dishonest)

= 70% honest hashrate = .7 BTC
● You own (1/71) of other pools, so expected

value of mining there is
(1/71) * .7 = 0.0098 BTC

● 0.0098 (cheat) > 0.0069 (honest)

More profitable to cannibalize pools than mine
honestly

(Originally presented by Martin Koppelmann at SF Bitcoin Devs Seminar)
AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

18

● Eyal optimizes profitability under how much
hashrate to dedicate to attacking

● Model attack decisions as an iterative game
○ Two players: pool A and pool B

● Each iteration of the game is a case of the
Prisoner’s Dilemma
○ Choose between attacking or not

attacking

AUTHOR: MAX FANG

THE MINER'S DILEMMA
ITTAY EYAL, "THE MINER'S DILEMMA"

19

● If pool A chooses to attack pool B, pool A
gains revenue, pool B loses revenue
○ Pool B can retaliate by attacking pool

A and gaining more revenue
● Thus, attacking is the dominant strategy in

each iteration
○ Therefore if both pool A and pool B

attack each other, they will be at a
Nash Equilibrium

○ Both will earn less than they would
have if neither of them attacked.

AUTHOR: MAX FANG

THE MINER'S DILEMMA
ITTAY EYAL, "THE MINER'S DILEMMA"

20

● No-pool-attacks is not a Nash equilibrium
○ If none of the other pools attack, a pool can

increase its revenue by attacking the others
● But if the pools agree not to attack, both (or

all) benefit in the long run.
○ However, this is an unstable situation since

on a practical level you can attack another
pool anonymously

● If pools can detect attacks then maybe an
optimistic long term solution is feasible

Nash Equilibrium is a Tragedy of the Commons

AUTHOR: MAX FANG

THE MINER'S DILEMMA
ITTAY EYAL, "THE MINER'S DILEMMA"

21

SELFISH MINING:
ANALYSIS AND

DEFENSE2

22

REVIEW:
SELFISH MINING2.1

23

SELFISH MINING (BLOCK-WITHHOLDING)

You are a miner; suppose you have just found a block.
● Instead of announcing block to the network and receiving reward, keep it

secret
● Try to find two blocks in a row before the network finds the next one

This is called selfish mining or block-withholding

Secret
block

Block not
yet found Note: "block-withholding" is also

sometimes used in the context of
mining pools - submitting shares but
withholding valid blocks

AUTHOR: MAX FANG

HONG KONG 2017

24

If you succeed in finding a second block, you have fooled the network
● Network still believes it is mining on the longest proof of work chain
● You continue to mine on your own chain

Secret
block

Block not
yet found

Secret
block

SELFISH MINING (BLOCK-WITHHOLDING)

AUTHOR: MAX FANG

HONG KONG 2017

25

If the network finds a block, you broadcast your two secret blocks and make the
network block invalid

● While network was working on the invalid block, you got a bunch of time to
mine by yourself... for free!

● Free time mining on network
=> higher effective proportion of hashrate => higher expected profits!

New
block

Broad
cast

Broad
cast

SELFISH MINING (BLOCK-WITHHOLDING)

AUTHOR: MAX FANG

HONG KONG 2017

26

But what if the network found their new block before you could find a second one?
Race to propagate!

● If on average you manage to tell 50% of the network about your block first:
○ Malicious strategy is more profitable if you have >25% mining power

● If you have >33% mining power, you can lose the race every time and
malicious strategy is still more profitable!
○ (actual math omitted due to complexity)

New
block

Broad
cast

SELFISH MINING (BLOCK-WITHHOLDING)

AUTHOR: MAX FANG

HONG KONG 2017

27

PUBLISH OR
PERISH:

A DEFENSE2.2

28

● However, does not provide a
mechanism to evaluate whether the
number of proofs is adequate to
continue working

● Does not discuss how to prevent
Sybil attacks on signatures
○ Selfish miner generates many

signatures on the dummy block

Dummy block signatures
Proposed by Schultz (2015), Solat and
Potop-Butucaru (2016)
● Accompany solved blocks with

signatures on dummy blocks
● Proves that the block is witnessed

by the network
○ Proves that a competing block

is absent before miners are
able to work on it

AUTHOR: MAX FANG

DEFENSES: BLOCK VALIDATION
HONG KONG 2017

29

All three of these defenses require
fundamental changes to the block
validity and reward distribution rules
● Requires a hard fork to implement

○ We have hard enough time fixing
transaction malleability

Can we do better?

Fork-punishment rule
Proposed by Lear Bahack (2013)
● Competing blocks receive no block

reward
● The first miner who incorporates a

poof of the block fork in the
blockchain gets half of the forfeited
rewards

● However, honest miners suffer
collateral damage of this defense
○ This defense constitutes

another kind of attack
AUTHOR: MAX FANG

DEFENSES: FORK-PUNISHMENT
HONG KONG 2017

30

AUTHOR: MAX FANG

Uniform Tie Breaking
Proposed by Eyal and Sirer (2014)
● In the case of a tie, a miner randomly chooses which chain to mine on

○ Prevents an attacker from benefiting from network-level dominance
● Raises the profit threshold from 0% to 25% under their strategy

○ Sapirshtein (2015) proposes a more optimal selfish mining strategy
○ Reduces Eyal and Sirer profit threshold to 23.2%

DEFENSES: TIE-BREAKING
HONG KONG 2017

31

AUTHOR: MAX FANG

DEFENSES: TIE-BREAKING
HONG KONG 2017

Unforgeable timestamps
Proposed by Ethan Heilman (2014)
● Each miner incorporates the latest

unforgeable timestamp issued by a
trusted party into the working block
○ Timestamp is publically accessible and

unpredictable
○ Issued with an interval of 60s

● When two competing blocks are
received within 120s, a miner prefers the
block whose timestamp is "fresher"

● Claim: Raises the profit threshold to 32%

Drawbacks
● Tie-breaking rules don’t apply

when the selfish mining chain is
longer than the public chain
○ Only applies to a block

propagation race
● If an attacker has a large amount of

computational power >40% then
these defenses are essentially
worthless

32

Ren Zhang and Bart Preneel (Apr 2017) claim the best-yet defense of selfish mining
● Backwards compatible: No hard fork
● Disincentivizes selfish mining even when if the selfish miner has a longer chain

Approach: A novel Fork-Resolving Policy (FRP)
● Replace the original Bitcoin FRP (length FRP), with a weighted FRP

○ Embed in the working block the hashes of all its uncle blocks
● Note that selfish mining is premised on the idea of first building a secret block
● Idea: Make sure this secret block does not help the selfish miner win the block

race

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

33

Zhang and Preneel's Weighted Fork Resolving Policy:

1. If one chain is longer height-wise than the other(s) by k or greater blocks*
a. The miner will mine on this chain

2. Otherwise, the miner will choose the chain with the largest weight
3. If the largest weight is achieved by multiple chains simultaneously, then the

miner chooses one among them randomly

*Aside: k is a "fail-safe parameter" that gauges the allowed amount of network partition. Note
that when k = ∞ the first rule never applies.

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

34

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Miner has one secret block. A competing block is published. Block race! Miner has two options:
● Option 1: If the selfish miner publishes their block, the next honest block gains a higher

weight by embedding a proof of having seen this block
● Option 2: If the selfish miner keeps their block secret, the secret block does not

contribute to the weight of its own chain
● In both scenarios, the secret block does not help the selfish miner win the block race

Choice 1: Publish Choice 2: Don't publish

35

Definitions
● ᶦ: An assumed upper bound on the amount of time it takes to propagate blocks across the

Bitcoin network
● In time. Evaluated from the miner’s local perspective.

1. Height value is greater than that of the local head OR
2. Height value is same as that of the local head, but was propagated within ᶦ time

● Uncle. Different from Ethereum’s definition of an uncle
1. The uncle of a block B is one less the height of B
2. The uncle has to be in time

"A block B1 is the uncle of another block B2 if B1 is a competing in-time block of B2’s
parent block"

● Weight. Since two competing chains always have a shared root, only consider blocks after that
○ weight = # of in time blocks + # of uncle hashes embedded in these blocks

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

36

AUTHOR: MAX FANG

PUBLISH OR PERISH

Same scenario revisited. More rigorously, let ᫷ be the first selfish block

Choice 1: Selfish miner publishes ᫷
● ᫷ will be an uncle of the next honest block

○ (since it was published in time and its height is one less)
=> ᫷ counts into the weight of both the honest and the selfish chain

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Choice 1: Publish

37

AUTHOR: MAX FANG

PUBLISH OR PERISH

Choice 2: Selfish miner doesn't publish ᫷
● Selfish miner waits, and publishes it later as a part of the selfish chain
● Honest miners do not count ᫷ into the weight of the selfish chain because ᫷ is not in time.

○ It is a late block
● ᫷ is not an uncle of the next honest block because the honest miners did not see it

=> ᫷ contributes to neither the weight of the honest nor the selfish chain

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Choice 2: Don't publish

38

AUTHOR: MAX FANG

PUBLISH OR PERISH

Result: Regardless of which option is chosen...

● ᫷ will not contribute to only the weight of the selfish chain.
○ Will only contribute to both or neither

● Completely nullifies the advantage of the secret block ᫷ !

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

Choice 1: Publish Choice 2: Don't publish

39

AUTHOR: MAX FANG

PUBLISH OR PERISH
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

40

Limitations
● Bitcoin aims be asynchronous, Publish and Perish assumes synchronicity

○ (Because it assumes an upper bound of block propagation time)
○ Because of this, it's basically useless

● When the fail-safe parameter k > 1, an attacker may broadcast blocks right before they are late
to cause inconsistent views among the honest miners

○ Several other selfish mining defenses also require a fixed upper bound on the block
propagation time in order to be effective

● During the transition period to weighted FRP, an attacker can launch double-spend attacks
● Neglects real world factors:

○ Does not permit the occurrence of natural forks
○ Does not consider transaction fees on the selfish miner’s strategy
○ Does not consider how multiple selfish miners could collude and compete with each

other
● Does not achieve incentive compatibility, but is the closest scheme to date

AUTHOR: MAX FANG

PUBLISH OR PERISH: LIMITATIONS
ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

41

NETWORK
ATTACKS AND

ASICBOOST
3

42

NETWORK
ATTACKS3.1

43

DOS ATTACK - MALICIOUS MINERS

Malicious miners can denial-of-service attack (DoS) competing miners, effectively
taking the competing miners out of the network and increasing the malicious
miner’s effective hash power!

Miners with access to a distributed Botnet have a competitive advantage.

Caveat: need to maintain DoS for 2 weeks so block difficulty adjusts.

AUTHOR: PHILIP HAYES

HONG KONG 2017

44

ECLIPSE ATTACK

Force network partition between public

network and a specific miner

● Set up yourself, Alice, as a MITM

between Bob (the public network)

and Lucy (the victim miner).

● If successful, the attacker can

○ control the blocks Lucy sees

○ force Lucy to mine on Alice’s

chain

○ N-confirmation double spend
AUTHOR: PHILIP HAYES

HEILMAN ET AL.

Alice
(attacker)

Lucy
(victim)

Bob
(public)

45

ECLIPSE ATTACK

Bitcoin Networking Background
● Most nodes have 8 outgoing connections

and 117 incoming connections.

● tried table: stores IP address that a node

has successfully made incoming or outgoing

TCP connections.

● new table: stores IP addresses received

from DNS seeders or ADDR messages.

○ ADDR messages contain a list of

known peer IP addresses (up to 1000).

AUTHOR: PHILIP HAYES

HEILMAN ET AL.

● When a node restarts

○ Randomly selects an IP address from

either tried or new tables

○ If the connection succeeds, add that

IP address as a new outgoing

connection.

○ Repeat until 8 outgoing connections.

46

ECLIPSE ATTACK

AUTHOR: PHILIP HAYES

HEILMAN ET AL.

Eclipse Attack Details
1. Acquire large number of IP addresses, e.g., control a distributed botnet.

2. Fill the tried table with attacker-controlled addresses by having them connect to

Lucy.

3. Overwrite addresses in the new table with “trash” IP addresses.

a. Have attacker peers send unsolicited ADDR messages filled with “trash”.

b. “Trash” addresses can be, e.g., “reserved for future use” like 252.0.0.0/8 block.

4. Force or wait for Lucy to restart.

5. With high probability, when Lucy restarts, she forms all of her outgoing connections

with attacker controlled IP addresses.

47

ASICBOOST
EXPLAINED3.2

48

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

ASICBOOST Overview

● ASIC mining optimization that increases hash rate by ~20-30%.

● Exploits reusable, partially computed, intermediate SHA256 states.

○ Precompute merkle tree permutations with the same 4-byte merkle tail

Recall: Bitcoin Block Header
0 36 80

bytesv
e
r
s
i
o
n

4

previous block hash merkle root

68 72 76

t
i
m
e

n
b
i
t
s

n
o
n
c
e

49

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

SHA-256 of Bitcoin Block Header
0 36 80

v
e
r
s
i
o
n

4

previous block hash merkle root

68

chunk 1 chunk 2

72 76

t
i
m
e

n
b
i
t
s

n
o
n
c
e

64 128
bytes

0

padding

S1 S2S0

128
bytes

50

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

SHA-256 of Bitcoin Block Header (cont.)

chunk 1 chunk 2

64 128
bytes

0

S1 S2S0

S0 S1
Double Hash
Output

51

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Saving work with colliding chunks

chunk 1

S1S0

S0

If we generate many block headers
where the second chunk is the same,
we can avoid recomputing the S1’s
when we update the nonce!

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 2, nonce = 0

S2

S1
Double Hash
Output

ABCD

52

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Saving work with colliding chunks

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 1

S1S0

S0

chunk 2, nonce = 0

S2

S1
Double Hash
Output

ABCD

chunk 2, nonce = 1

S2

S1
Double Hash
Output

chunk 2, nonce = 2^32 - 1

S2

S1
Double Hash
Output

53

ASICBOOST EXPLAINED
JEREMY RUBIN

How do we get block headers with equal chunk 2’s?

0 36 80
bytes

v
e
r
s
i
o
n

4

previous block hash
head

68 72 76

t
i
m
e

n
b
i
t
s

n
o
n
c
e

● Since version, prev. block hash are fixed:
○ Have to iterate over different merkle trees
○ Want to find merkle trees where last 4

bytes (tail) are the same (collide).

●

chunk 2chunk 1

merkle root

tail

AUTHOR: PHILIP HAYES

54

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Two Block Headers, A & B, with Colliding Merkle Tails
0 36 80

bytes
v
e
r
s
i
o
n

4

previous block hash merkle root head A

68 72 76

t
i
m
e

n
b
i
t
s

n
o
n
c
e

0 36 80
bytes

v
e
r
s
i
o
n

4

previous block hash merkle root head B

68 72 76

t
i
m
e

n
b
i
t
s

n
o
n
c
e

chunk 1 A same chunk 2

640

chunk 1 B

640

same chunk 2

t
a
i
l

t
a
i
l

55

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Simple method:

○ Swap the root’s children

○ Only need to recompute 1 hash.

AB
CD

AB CD

A B C D

Merkle Root: CD
AB

CD AB

C D A B

Recompute merkle root
in only 1 hash operation

56

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches

and sqrt(N) right merkle branches.

LLLLi

RRRRRj
LLL

RRR

Left merkle
branches

Right merkle
branches

57

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches

and sqrt(N) right merkle branches.

2. Iterate over all i, j and hash the ith left

branch with the jth right branch.

LLLLi

RRRRRj
LLL

RRR

Left merkle
branches

Right merkle
branches

LiRj

58

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches

and sqrt(N) right merkle branches.

2. Iterate over all i, j and hash the ith left

branch with the jth right branch.

LLLLi

RRRRj-1

RjLLL
RRR

Left merkle
branches

Right merkle
branches

LiRj-1

59

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Iterate over Candidate Merkle Trees for the block

● Efficient method:

○ Generate N merkle root permutations

○ Runs in O(N) time!

L

1. Generate sqrt(N) left merkle branches

and sqrt(N) right merkle branches.

2. Iterate over all i, j and hash the ith left

branch with the jth right branch.

3. Apply this recursively to generate

sqrt(sqrt(N)) left and right branches.

LLLLi

RRRRj-1

RjLLL
RRR

Left merkle
branches

Right merkle
branches

LiRj-1

60

ASICBOOST EXPLAINED

AUTHOR: PHILIP HAYES

JEREMY RUBIN

Finding N-Way collisions

● Instance of Generalized Birthday Paradox

● To find 4-Way merkle tail collision with >50%

probability requires:

○ N = 225 hashes = 1 GiB of space

● ~20-30% hash power advantage!

How does SegWit stop ASICBOOST?

● (aka why Bitmain is acting shady)

● SegWit adds a Witness Commitment in

coinbase of left-most merkle leaf.

● Requires miner to commit to transaction

ordering.

● Can’t permute merkle branches like

previously described, since that changes

the transaction ordering.

61

STUBBORN MINING
AND

ECLIPSE ATTACK
COMPOSITIONS

4

62

STUBBORN
MINING4.1

63

Generalizing selfish mining strategies
● Include block propagation race in

our model.
● Extend selfish mining to include

strategies that
○ withhold blocks longer
○ attempt to catch up to a longer

public chain
○ are more or less risky with

block propagation races

STUBBORN MINING

AUTHOR: PHILIP HAYES

Certain strategies outperform selfish
mining
● for different hash rates and block

race win rates.
● Strategy metric:

○ Strategy A > Strategy B if we
earn more BTC on average

NAYAK, KUMAR, MILLER, SHI

64

Main Variables

● ᶓ (Alice): Attacker's proportion of network hashrate

● β (Bob): Honest network hashrate

● ᶕ: Proportion of Bob’s network that will mine on Alice’s block when Alice and

Bob have released a block at approximately the same time, resulting in an

equal length fork

FORMAL MODEL

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

65

PLAUSIBLE VALUES OF ᶓ AND ᶕ

AUTHOR: PHILIP HAYES

Plausible values of ᶓ - Alice mining power:
● 37% : Three largest mining pools collude

● 26% : Two largest mining pools collude

● 16% : Largest mining pool

Not Plausible / Not Considered:
● >50% : Consensus breaks down anyway

○ mining strategy not relevant

○ can mine every block

○ private fork will always outpace public

network given enough time

NAYAK, KUMAR, MILLER, SHI

66

PLAUSIBLE VALUES OF ᶓ AND ᶕ

Plausible values of ᶕ:
● ᶕ = Proportion of network that mines on

our block in a propagation race.

● Depends on:

○ Latency between Alice and other

nodes

○ Latency between other miner and

other nodes

○ Network topology, e.g., how

well-connected is Alice; large

miners usually well-connected.

● ⇒ Consider all values ᶕ in [0, 1]

NAYAK, KUMAR, MILLER, SHI

Alice can actively attack network to

improve ᶕ:
● Monopolize other nodes’ incoming

connections

○ Bitcoin nodes have a finite number

of incoming TCP connections

○ Alice can spawn sybils to fill up

available incoming connection slots.

Public Network Defenses :
● Miner backbone, e.g., FIBRE block relay

67

FORMAL MODEL

AUTHOR: MAX FANG

Stubborn Mining Strategies

● ᫬: Honest strategy

● ᫷: Selfish mining strategy

● ᫰-stubborn: Lead stubbornness

○ Does not broadcast blocks even with a high lead over the public

● ᫪-stubborn: Fork stubbornness

○ Will not give up during an equal fork

● ᫸ᬇ-stubborn: Trail stubbornness

○ Does not merge with public unless it is trailing the public by more than ᬇ
blocks

NAYAK, KUMAR, MILLER, SHI

68

Markov Chain State Representation
● lead: how much Alice's chain is ahead

of Bob's. Is some integer N
● N': There is a fork, and

○ The revealed portion of the fork is
of equal length

○ Bob's mining power is split on this
fork according to ᶕ

● N'': Same as N', but all of Bob's mining
power is on their own fork (i.e. ᶕ = 0)

FORMAL MODEL

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

69

FORMAL MODEL

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

Markov Chain State Representation
● lead: how much Alice's chain is ahead

of Bob's. Is some integer N
● N': There is a fork, and

○ The revealed portion of the fork is
of equal length

○ Bob's mining power is split on this
fork according to ᶕ

● N'': Same as N', but all of Bob's mining
power is on their own fork (i.e. ᶕ = 0)

70

EXAMPLE: SELFISH MINING

A mining strategy consists of two
decisions:
1. When to broadcast your private

chain
2. When to mine off the public chain's

head

Honest mining: Always broadcast as
soon as block is found, and always
accept longest chain

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI Selfish mining
● When lead = 2 and Bob mines the

next block: Reveal Alice’s entire
private chain to Bob (resulting in
lead = 0)

● When lead = 0' and Alice mines the
next block: Reveal Alice’s private
chain to Bob (resulting in lead = 0).

● • When lead = 0 or lead > 0 and
Alice mines the next block: Do not
reveal Alice’s private chain

● Like in honest mining, Alice always
accepts the longest chain.

71 SELFISH MINING: MARKOV
REPRESENTATION

AUTHOR: MAX FANG

Selfish mining
● When lead = 2 and Bob mines the

next block: Reveal Alice’s entire
private chain to Bob (resulting in
lead = 0)

● When lead = 0' and Alice mines
the next block: Reveal Alice’s
private chain to Bob (resulting in
lead = 0).

● When lead = 0 or lead > 0 and
Alice mines the next block: Do
not reveal Alice’s private chain

● Like in honest mining, Alice
always accepts the longest chain.

NAYAK, KUMAR, MILLER, SHI

72

LEAD STUBBORN STRATEGY

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

73

TRAIL STUBBORN, EQUAL FORK STUBBORN

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

74

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
PROFITABILITY CALCULATION

Profitability measurements
● Profitability (for Alice) is measured

as relative gain of Alice compared
to Bob

gain᫼ is proportion of blocks earned by
Alice under strategy ᫼.

Gains are normalized w.r.t. ᶓ
● ᶓ is what Alice would have

received honestly

75

DOMINANT STRATEGY SPACE

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI

76

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
DOMINANT STRATEGY SPACE

77

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
RELATIVE PROFITABILITY

78

AUTHOR: MAX FANG

NAYAK, KUMAR, MILLER, SHI
RELATIVE PROFITABILITY

79

ECLIPSE
ATTACK

COMPOSITIONS4.3

80

Combining Stubborn Mining and Eclipse Attacks
● ᶝ : Lucy’s hash power = the eclipsed miners’ hash power

● D : Destroy the Eclipsed Victim

○ Alice ignores all of Lucy’s mined blocks, effectively removing Lucy from the network

● C : Collude with the Eclipsed Victim

○ Alice forces Lucy to mine on Alice’s private chain by feeding Lucy only Alice’s

blocks.

NAIVE ECLIPSE STRATEGY

AUTHOR: PHILIP HAYES

NAYAK, KUMAR, MILLER, SHI

81

SOPHISTICATED ECLIPSE STRATEGY

AUTHOR: PHILIP HAYES

NAYAK, KUMAR, MILLER, SHI

More Sophisticated Eclipse Strategies
● DNS : Destroy if No Stake

○ Only broadcast Lucy’s blocks if she’s mining on our private chain.

○ Otherwise, if Lucy finds a block on the main chain (lead = 0), we ignore her blocks

82

SOPHISTICATED ECLIPSE STRATEGY

AUTHOR: PHILIP HAYES

NAYAK, KUMAR, MILLER, SHI

Optimal Strategy Space
● In some cases, Lucy is actually

incentivized to collude with

Alice!

83

COLLUSIONS
AND

CONCLUSIONS5

84

POST-BLOCK REWARD BITCOIN

Assumption: average Bitcoin user holds
$100,000 in Bitcoin, willing to pay $1000 in
fees

● (This is when Bitcoin is near 0 block
reward)

● Is mining based off transaction fees
sustainable?

● Money must move, must be paid in
transaction fees so that miners can
collect it as mining reward

● Amount of hashpower going into
Bitcoin dependent on mining reward

Therefore
● (average fees paid) / (avg holdings) =

(network fees paid) / (market cap) =
(cost of attacking) / (market cap)

● In our example, attacker only needs
to pay 1% of the market cap of Bitcoin
to gain 50% of the hashrate
○ Since that is the amount of

money going into mining
● More realistic scenario: Attacker only

needs 0.1% of market cap to attack

Post reward Bitcoin must have a high
velocity of money to be secure

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

85

LEMMAS 1 & 2

Computational power requires electricity, which, requires $$, reaches equilibrium if
miners are breaking even or profitable

● Lemma 1: Mining Reward = Mining Cost

If you are roughly breaking even with the capital you invest, there is little to no
marginal cost to getting more hashrate. You simply need more capital to attain 51%

● Lemma 2: Cost of acquiring 51% ≈ 0 < Mining cost

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

86

LEMMA 3

What profits can you get from owning >51% of the hashrate
● Crash the currency? No problem. Regain value (and then some) by shorting Bitcoin

on an exchange

You can effectively get 100% of the mining reward
● Only mine on your own blocks

○ Can prevent anyone else from mining - you always produce longest PoW chain

How this would affect the price depends on threshold
● q = 51% => 49% of blocks are orphaned (eh)
● q = 80% => 20% of blocks are orphaned

○ Average Bitcoin user not really affected, still able to make transactions

Lemma 3: Value of 51% attack > Mining Reward

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

87

LEMMA COMBINATION AND CONCLUSION

Lemmas:
● Lemma 1: Mining Reward = Mining Cost
● Lemma 2: Cost of acquiring 51% < Mining Cost
● Lemma 3: Value of 51% attack > Mining Reward

Therefore, Value of 51% attack > Cost of acquiring 51%

If math is correct, Game Theory says that 51% attacking Bitcoin is profitable

(Originally presented by Martin Koppelmann at SF Bitcoin Devs Seminar)
AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

88

COLLUSIONS5.1

89

POOL COLLUSIONS

Bitcoin mining is zero sum
● In general, to increase earnings, someone

else needs to be excluded

Members-only Mining
● Let hashrate join a collusion until 80% of

the network is in, then exclude the rest
● No incentive not to join

○ Attack succeeds, get increased
reward

○ Attack wouldn't fail: conduct attack in
such a way that it wouldn't start until
the threshold is reached

● Therefore Game Theory dictates that this
would always happen

Naive Example

● 3 pools collude, own more than 51%
● Ignore every 10th block of another pool
● How to detect?

More profitable than honest strategy

Thought: How many of these are going on
today?

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

90

CONCLUSIONS5.2

91

Pool Block-Withholding: Countermeasures?
● Want: A way to offset costs incurred by pool wars
● Idea: More orphaned blocks are a sign of pool wars
● Martin Koppelmann proposes insurance contracts that pay out to bitcoin

stakeholders based on number of orphaned blocks

What are the implications?
● Yaron Velner, Jason Teutsch, and Loi Luu explore this concept in detail
● "Smart Contracts Make Bitcoin Mining Pools Vulnerable" (2017)

DESTROYING MINING POOLS

AUTHOR: MAX FANG

MARTIN KOPPELMANN, SF BITCOIN DEVS

92

"Insurance contracts" incentivizes pool
block-withholding
● Recall: Pay-per-share mining pool

reward scheme pays per every partial
hash solution found

○ No incentive to submit valid blocks to
the pool beyond the reward for that
share

● Incentivizing someone from submitting
a valid block only requires offsetting
the cost of a single share

○ Called the block purchasing budget

AUTHOR: MAX FANG

Let's trustlessly (and anonymously) set up
a way for someone to receive a reward for
withholding a block from a pool. Sketch:

● Set up a contract on Ethereum, which
has a scripting language rich enough
to parse Bitcoin blocks

● Reward a tuple where

(b'2 is the withheld block)

This proof-of-stale-work can even be
targeted at a specific pool

VELNER, TEUTSCH, LUU (2017)
DESTROYING MINING POOLS

93

Velner, Teutsch, and Luu do some napkin math:
● D the difficulty of the entire Bitcoin network
● d the difficulty of a single share. s = d / D
● r be the block reward,

The reward per share is thus r * (d / D)
● Highest recommended d = 4,096. Network parameter D > 2.53 x 109 (Nov 2016)

Result: Reward from a single share (in Nov 2016) is 2.5x10-7 = $0.02 per share

DESTROYING MINING POOLS

AUTHOR: MAX FANG

VELNER, TEUTSCH, LUU (2017)

94

Some more napkin math:
● ᶓ attacker's mining power, as a

fraction of the network
● ᶔ the proportion of blocks that are

withheld from the network
● If attacker manages to discard ᶔ

fraction of blocks, their effective
hashrate in the network is

a = ᶓ / (1 - ᶔ)
● Attacker's additional revenue from

destroying fraction of blocks is

● When ᶔ fraction of miners don't
submit valid blocks, network difficulty
decreases by multiplicative factor
(1 - ᶔ) and expect to find ᶔ / (1 - ᶔ)
blocks.

● Expected revenue is thus s * r times
the above quantity, yielding revenue

Combining (2) and (3), both attacker and
participating miners are profitable if

DESTROYING MINING POOLS

AUTHOR: MAX FANG

VELNER, TEUTSCH, LUU (2017)

95

DESTROYING MINING POOLS

AUTHOR: MAX FANG

Both attacker and participating miners are
profitable if

What is s? From our previous calculations,

which is 1/50,000,000 of the network or
0.000002%

VELNER, TEUTSCH, LUU (2017)
0.000002% of the network is equivalent
to 4 TH/s mining power
● Less than a single ASIC

Conclusion:
● With a single ASIC worth of mining

power, an attacker can incentivize all
miners a given PPS mining pool to
cannibalize the pool
○ Attacker even profits!

● Theoretical result: Easily destroy all
mining pools this way with one ASIC

But how realistic is this really?

96

Practical caveats to game-theoretical attacks

● Attack requires significant risk or capital
○ Poor game-theoretical assumption

● Hard to write and deploy custom exploitative software
● Insufficiently motivated attackers
● Miners may support Bitcoin
● Social costs: vigilante attackers

○ Lack of anonymity

CAVEATS TO RATIONALITY ASSUMPTIONS

AUTHOR: MAX FANG

HONG KONG 2017

97

CONCLUSIONS

The world is not rational!
● We're bound by the paradox of choice
● Rationality assumptions conjecture no need for the work of academics

○ We would have exploited these attacks in practice already!

Conclusion
● Bitcoin is not game-theoretically secure

○ Something else is keeping Bitcoin alive
○ More emphasis should be placed on behavioral economics, psychology,

and sociology

AUTHOR: MAX FANG

HONG KONG 2017

98

RELATED WORK NOT COVERED

Additional great game theoretical work:
● Joseph Bonneau paper on in-band double spend bribery

○ Whale transactions
● (Claimed) Incentive compatible PoW blockchains

○ Fruitchains (2016) by Elaine Shi
○ Meshcash and some more

● In-depth Post Block-Reward analysis
○ Narayanan et al 2016: "On the Instability of Bitcoin Without the Block

Reward"
● Vlad Zamfir on Casper

AUTHOR: MAX FANG

HONG KONG 2017

99

EXTRA
CONTENTX

AUTHOR: MAX FANG

100

AUTHOR: MAX FANG

PUBLISH OR PERISH

●

ZHANG AND PRENEEL, "PUBLISH OR PERISH" (2017)

101

IN-BAND SMART CONTRACT BRIBERY

AUTHOR: MAX FANG

BONNEAU, "WHY BUY WHEN YOU CAN RENT?"

102

DOUBLE SPENDS: WHALE TRANSACTIONS

AUTHOR: MAX FANG

HONG KONG 2017

103

Source:
blockchain.info/pools (2017-05-15)

Community exhibits backlash
against large mining pools

● Ex: GHash.io in 2014

Single entity might be be
participating in multiple pools

● Called "Laundering
hashes"

● Actual concentration of
control over mining
hardware is unknown

MINING POOL
HASHRATE
DISTRIBUTION

AUTHOR: MAX FANG

https://blockchain.info/pools
https://blockchain.info/pools

104

MINING POOLS - SHARES

How to prove that you are contributing to the pool?

Submit Shares: 'Near-valid' blocks

● Producing shares implies computational power being expended
● Pool operator pays for valid shares

○ Rewards distributed proportional to # of shares submitted

● Valid blocks are shares as well
○ Individual who finds valid block is not rewarded any extra coins

FAQ: Why can't someone submit shares in a pool and keep the reward of the valid block
for themselves?
● The valid block is based on the Merkle root given by the pool operator.
● Pool public key ➞ Coinbase tx ➞ Merkle Root

AUTHOR: MAX FANG

HONG KONG 2017

105

MINING POOLS - BASIC REWARD SCHEMES

Pay-per-share

Pool pays out at every share submitted. By
default will be proportional to work done by
individuals

1. More beneficial for miners
2. Individual miners have no risk from reward

variance
a. Pool takes on the risk completely

3. Problem: No incentive for individuals to
actually submit valid blocks

a. Individuals are paid regardless

Proportional

Pool pays out when blocks are found,
proportional to the work individuals have
submitted for this block

1. More beneficial for the pool
2. Individual miners still bear some risk in

variance proportional to size of the pool
a. Not a problem if pool is sufficiently

large
3. Lower risk for pool operators - only pay out

when reward is found
a. Individuals thus incentivized to

submit valid blocks

AUTHOR: MAX FANG

HONG KONG 2017

106

POOL HOPPING

Pool hopping: switching between pools to
increase total rewards

● Proportional pool pays larger amount per
share if a block is found quickly

Example clever strategy:

● Mine at proportional pool shortly after a
block was found (while rewards are high)

● Switch to pay-per-share pool when once
proportional pool is less profitable

Parameters:
● Pool has 10% of network hashrate
● 4 shares expected per valid block

AUTHOR: MAX FANG

HONG KONG 2017

107

POOL HOPPING

Therefore, proportional pools are not
feasible in practice

● Honest miners who stay loyal to one
pool are cheated out of their money

Designing a mining pool reward scheme
with aligned incentives that is not
vulnerable to pool hopping remains an
open problem

Parameters:
● Pool has 10% of network hashrate
● 4 shares expected per valid block

AUTHOR: MAX FANG

HONG KONG 2017

108

EXTRA

1. Use something better than QT
2. This works

a. If you reach 51%, you get a higher
reward, so it's sustainable

Hashrate / PoW does not secure
Bitcoin/transactions - full nodes do! PoW only
distributes votes

Other mechanics for vote distribution are
maybe fine

(Originally presented by
Martin Koppelmann at SF
Bitcoin Devs Seminar)

AUTHOR: MAX FANG

HONG KONG 2017

109

TRANSACTION MALLEABILITY

Transaction Malleability:

Nodes relaying a fresh transaction can tweak certain fields to make a version of the
transaction with a different hash image, yet the digital signature still verifies!

AUTHOR: PHILIP HAYES

HONG KONG 2017

110

TRANSACTION MALLEABILITY

Transaction Malleability:

Nodes relaying a fresh transaction can tweak certain fields to make a version of the
transaction with a different hash image, yet the digital signature still verifies!

For example: in ECDSA, the following signature pairs are equivalent:

(r, s (mod N)) and (r, -s (mod N))

Both validate the same transaction data, but now the hash image changes.

Additionally, the scriptSig field can (sometimes) have extraneous script ops tacked on
the end.

AUTHOR: PHILIP HAYES

HONG KONG 2017

111

TRANSACTION MALLEABILITY

When is this an issue? In some cases, transactions rely on a chain of previous
transactions (common in micro payments / lightning network).

Changing the hash image of a prior transaction in the chain will invalidate every
subsequent transaction!

AUTHOR: PHILIP HAYES

HONG KONG 2017

112

TRANSACTION MALLEABILITY

Example: Mt. Gox Incident

1. Mt. Gox sees attacker made withdrawals
2. Attackers used transaction malleability to change txid in-flight
3. To Mt. Gox, it looks like the transaction didn’t go through. Meanwhile, the BTC

was actually sent to the attack!
4. Mt. Gox doesn't deduct amount from attacker's account, but still sent BTC.

Solutions? The new SegWit (Segregated Witness) proposal stores transaction
signatures in a separate merkle tree, effectively fixing transaction malleability.
(Not yet in production)

AUTHOR: PHILIP HAYES

HONG KONG 2017

